Surname	Centre Number	Candidate Number
Other Names		0

GCSE – NEW

3430U50-1

Unit 5 – CHEMISTRY 2 FOUNDATION TIER

THURSDAY, 17 MAY 2018 - MORNING

1 hour 15 minutes

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	5				
2.	8				
3.	5				
4.	13				
5.	8				
6.	6				
7.	11				
8.	4				
Total	60				

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** guestions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question 6 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

2

1. (a) Satis can be produced by reacting acids with alkalis. (a) Complete the following equation for the reaction between an acid and alkali. [1] acid + alkali → salt +				Examine only
 (a) Complete the following equation for the reaction between an acid and alkali. (b) Circle the word which best describes the reaction between an acid and an lakaling the alkaling of the word which best describes the reaction between an acid and an lakaling the alkaling of the word which best describes the reaction between an acid and an lakaling of the alkaling of the alkaling of the alkaling of the stomach. To treat indigestion and the acused by excess hydrochloric acid in the stomach. To treat indigestion, and the acused by excess hydrochloric acid in the stomach. To treat indigestion, and the alkaling of the			Answer all questions.	
<text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text>	1.	(a)	Salts can be produced by reacting acids with alkalis.	
<text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text>			(i) Complete the following equation for the reaction between an acid and alkali. [1]	
<text><text><text><text><text><text><text></text></text></text></text></text></text></text>			acid + alkali —→ salt +	
<text><text><text><text><text></text></text></text></text></text>				
A group of pupils used the following apparatus to compare three brands of antacid powder, been which was the most effective at treating acid indigestion.			displacement neutralisation oxidation reduction	
to see which was the most effective at treating acid indigestion. $antacid powder \qquad \qquad$		(b)		
<image/> <text><text><text><text></text></text></text></text>				
They added an equal mass of each of the antacid powders to separate beakers, containing equal amounts of hydrochloric acid and universal indicator. They stirred the mixture and recorded the time taken for the universal indicator to turn green in each beaker. They carried out the test three times for each antacid powder. Their results are shown in the table.			antacid powder	
They added an equal mass of each of the antacid powders to separate beakers, containing equal amounts of hydrochloric acid and universal indicator. They stirred the mixture and recorded the time taken for the universal indicator to turn green in each beaker. They carried out the test three times for each antacid powder. Their results are shown in the table.				
equal amounts of hydrochloric acid and universal indicator. They stirred the mixture and recorded the time taken for the universal indicator to turn green in each beaker. They carried out the test three times for each antacid powder. Their results are shown in the table.			hydrochione acid and universal indicator	
green in each beaker. They carried out the test three times for each antacid powder. Their results are shown in the table.				
			green in each beaker. They carried out the test three times for each antacid powder. Their	
02 @WIEC CBAC Ltd (3430U50.1)				
02 @WIEC CBAC Ltd (3430U50-1)				
		02		

3430U501 03

Private Result 1 Result 2 Result 3 Mean Brand 1 5:25 5:36 5:14 5:25 Brand 2 4:28 3:20 4:32 4:30 Brand 3 2:28 2:30 2:44 2:34 (i) State which two results were used to calculate the mean value for brand 2. [1]		een (min : s)	ndicator to turn g	or the universal in	Time taken fo	ntacid	An
Brand 2 4 : 28 3 : 20 4 : 32 4 : 30 Brand 3 2 : 28 2 : 30 2 : 44 2 : 34 (i) State which two results were used to calculate the mean value for brand 2. [1]		Mean	Result 3	Result 2	Result 1		
Brand 3 2 : 28 2 : 30 2 : 44 2 : 34 (i) State which two results were used to calculate the mean value for brand 2. [1]		5 : 25	5 : 14	5 : 36	5 : 25	and 1	Bra
 (i) State which two results were used to calculate the mean value for brand 2. [1] 		4 : 30	4 : 32	3 : 20	4 : 28	and 2	Bra
 (ii) Convert the mean time for brand 2 into seconds. (iii) Convert the mean time for brand 2 into seconds. (iii) Give the reason why the results suggest that brand 3 is the best powder for treating 		2:34	2:44	2 : 30	2 : 28	and 3	Bra
(iii) Give the reason why the results suggest that brand 3 is the best powder for treating	_			and			
	or treating			results suggest	e reason why the igestion.	Give the acid ind	(iii)
	or treating			results suggest	e reason why the igestion.	Give the acid ind	(iii)
	or treating			results suggest	e reason why the ligestion.	Give the acid ind	(iii)
	or treating			results suggest	e reason why the igestion.	Give the acid ind	(iii)
	or treating			results suggest	e reason why the ligestion.	Give the	(iii)
	or treating			results suggest	e reason why the igestion.	Give the acid ind	(iii)
	or treating			results suggest	e reason why the ligestion.	Give the acid ind	(iii)
	or treating			results suggest	e reason why the igestion.	Give the	(iii)

			Exa
(a)		omium is one of the metals found in stainless steel. The equation shows how chromiun oduced industrially by reacting chromium oxide with aluminium.	n
	(chromium oxide + aluminium → chromium + aluminium oxide	
	(i)	The reaction is highly exothermic.	
		Give the meaning of the term <i>exothermic</i> . [1]]
	(ii)	During the reaction, oxidation and reduction happens.	•
		I. Name the substance which is oxidised. [1]]
		II. State what is meant by <i>reduction</i> . [1]]
	(iii)	State what the equation tells you about the relative reactivities of chromium and	
	•••••••	aluminium. [1	

Examiner only One of the fractions obtained from crude oil contains hexane, C_6H_{14} . (C) Calculate the percentage by mass of carbon in hexane. [2] $A_{\rm r}({\rm H}) = 1$ $A_{\rm r}({\rm C}) = 12$ Percentage =% 3430U501 09

9

13

3430U501 11

Examiner only Plastics are made from chemicals that are obtained from crude oil. Supermarkets in Wales (e) were the first in the UK to charge their customers for plastic bags. This was to reduce the amount of plastic waste generated. Give two methods of plastic waste disposal that lead to environmental problems. Explain the problem linked to each method. [2] Method 1 Problem _____ Method 2 Problem

11

5. There are a number of factors that should be taken into consideration when deciding what makes the 'best fuel'.

Information was collected about various factors for three fuels, A, B and C.

Fuel A

- Existing supplies will last around 50 years
- Releases 2.8 kJ of energy per gram of fuel burned
- Costs 0.03p per gram of fuel burned
- Burns very easily and no storage issues
- Releases carbon dioxide and water vapour when it burns

Fuel B

- There are infinite supplies of this fuel
- Releases 44.1 kJ of energy per gram of fuel burned
- Costs 0.18p per gram of fuel burned
- Burns very easily but can be difficult to store
- Releases water vapour when it burns

Fuel C

- Existing supplies will last around 250 years
- Releases 1.2 kJ of energy per gram of fuel burned
- Costs 0.04p per gram of fuel burned
- Burns very easily and fairly easy to store
- Releases carbon dioxide, sulfur dioxide and water vapour when it burns

This information was analysed by a group of students to decide what they considered to be the 'best fuel'.

						One of the stud each fuel. Choo box.	′b)
C B A	C A B	B C A	B A C	A C B	A B C	best fuel	
						Which of the fo when they burn	(c)
ey burn	g when th	al warmin	n and glo	o acid rair	ontribute f	all of the fuels c	
ey burn	g when th	al warmin	and glol	o acid rair	ontribute t	fuels A and C c	
rns	when it bu	warming	ınd globa	acid rain a	ibutes to	only fuel C cont	
 they burn	ning wher	lobal warr	ain and g	e to acid i	s contribu	none of the fuel	
						Reason	

6.	The diagram shows	s the three stages	used in the pre	paration of coppe	er(II) sulfate cry	stals from
	copper(II) carbonat	e and sulfuric acic	l. ·			
	Stage 1		Stage 2		Stage 3	
	Describe and expla	in each stage of t	ne preparation.	Include an equation	on in your answ	ver. [6 QER]
						6
	15	© WJEC CBAC Ltd.	(3430U50-1)		т	urn over.

Their results are shown below.

Time (a)	Mass of copper formed (mg)				
Time (s)	1	2	Mean		
0	0	0	0		
10	2.8	3.2	3.0		
20	4.8	5.0	4.9		
30	8.2	7.8	8.0		
40	10.8	11.2	11.0		
50	12.9	13.1	13.0		
60	15.8	16.0	15.9		

			Examiner
(b)	(i)	Use the results collected at 30s and the following equation to calculate the percentage variation in these measurements.	only
	per	rcentage variation = <u>furthest mass from the mean – mean mass</u> × 100 mean mass	
		Percentage variation =	%
	(ii)	The mass of copper formed is lower than expected. Give the most likely reason f this difference.	or 1]
18		© WJEC CBAC Ltd. (3430U50-1)	

20

(b) The energy needed to break all the bonds in the methane and oxygen molecules is 2848kJ. Calculate the overall energy change for this reaction and use this value to explain why the reaction is exothermic.			Examiner
reaction is exothermic. [2] Overall energy change = kJ	(b)	The energy needed to break all the bonds in the methane and oxygen molecules is	
END OF PAPER		Calculate the overall energy change for this reaction and use this value to explain why the reaction is exothermic. [2]	
END OF PAPER			
END OF PAPER		Overall energy change = kJ	
END OF PAPER			
		END OF PAPER	4

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

FORMUL	AE FOR SO	ME COMMON IO	NS

POSITIVE IONS		NEGATIVE IONS					
Name	Formula	Name	Formula				
aluminium	Al ³⁺	bromide	Br ⁻				
ammonium	NH4 ⁺	carbonate	CO3 ²⁻				
barium	Ba ²⁺	chloride	CI				
calcium	Ca ²⁺	fluoride	F [−]				
copper(II)	Cu ²⁺	hydroxide	OH⁻				
hydrogen	H⁺	iodide	1-				
iron(II)	Fe ²⁺	nitrate	NO ₃ ⁻				
iron(III)	Fe ³⁺	oxide	0 ²⁻				
lithium	Li ⁺	sulfate	SO4 ²⁻				
magnesium	Mg ²⁺						
nickel	Ni ²⁺						
potassium	K ⁺						
silver	Ag ⁺						
sodium	Na ⁺						
zinc	Zn ²⁺						

		[2	24							
	0	⁴ Helium 2	20 Neon 10	40 Ar Argon 18	84 Kr Mr	Krypton 36	131 Xenon	54	222 Rn	Radon 86			
	~		19 F Fluorine 9	35.5 CI Chlorine	80 Br	35 35	127 Iodine	53	210 At	Astatine 85			
	9		16 O Oxygen 8	32 S Sulfur 16	79 Se	Selenium 34	128 Te Tellurium	52	210 Po	Polonium 84			
	2J		14 Nitrogen 7	31 Phosphorus 15	75 AS Arsenic	AISEIIIC 33	122 Sb Antimonv	51	209 Bi	Bismuth 83			
	4		12 C Carbon 6	28 Si 14	73 Ge	Germanium 32	119 Sn	50	207 Pb	Lead 82			
	ო		11 B 5	27 Aluminium 13	70 Ga	Gallium 31	115 Indium		204 TI	Thallium 81			
щ					65 Zn 7in0	ZINC 30	112 Cd Cadmium	48	201 Hg	Mercury 80			mass
TABL					63.5 Cu		108 Ag Silver		197 Au	Gold 79			
E PERIODIC TABLE					59 Ni Niotol			46	195 Pt	Platinum 78			
RIO					⁵⁹ Co Cobolt	Cobalt 27	103 Rhodium	45	192 Ir	lridium 77			 relative atomic mass atomic number
EPE	dno	e]		56 Fe	lron 26	101 Ru	44	190 Os	Osmium 76		Key	
Ŧ	Gro	Hydrogen			55 Mn	Manganese 25	99 Tc	43	186 Re	Rhenium 75			Ar Symbol Name Z
					Cr Cr Cr	Chromium 24	96 Molvhdenium	42	184 X	Tungsten 74			
					51 Vanadium	variaulur 23	93 Ninbium	41	<u>Та</u>	Tantalum 73	-		
					48 Ti	litanium 22	91 Zr Zirconium	40	179 Hf	Hafnium 72			
					45 Sc	Scandium 21	89 Xttrium	39	139 La	Lanthanum 57	227 AC	Actinium 89	
	2		9 Be Beryllium	24 Mg Magnesium 12	Ca Ca	Calcium 20	88 Srontium Strontium	38	137 Ba	Barium 56	226 Ra	Radium 88	
			7 Li Lithium 3	23 Na Sodium	39 A	Potassium 19	86 Rb Bubidium	37	133 Cs	Caesium 55	223 Fr	Francium 87	

(3430U50-1)

PMT